
1

SUBJECT NAME: Computer Organization &
Architecture

SUBJECT CODE: 203105253

UNIT 6

Prepared By
Trilok Suthar

2

MEMORY ORGANIZATION:
Memory organization: Memory interleaving, concept of
hierarchical memory organization, cache memory, cache
size vs. block size, mapping functions, replacement
algorithms, write policies

3

Memory interleaving

• Pipeline and vector processors often require simultaneous access
to memory from two or more sources. An instruction pipeline may
require the fetching of an instruction and an operand at the same
time from two different segments.

• Similarly, an arithmetic pipeline usually requires two or more
operands to enter the pipeline at the same time. Instead of using
two memory buses for simultaneous access, the memory can be
partitioned into a number of modules connected to a common
memory address and data buses.

• A memory module is a memory array together with its own address
and data registers.

4

• Figure shows a memory unit with four modules. Each memory array
has its own address register AR and data register DR.

5

concept of hierarchical memory organization

• This Memory Hierarchy Design is divided into 2 main types:

• External Memory or Secondary Memory
Comprising of Magnetic Disk, Optical Disk, Magnetic Tape i.e.
peripheral storage devices which are accessible by the processor
via I/O Module.

• Internal Memory or Primary Memory
Comprising of Main Memory, Cache Memory & CPU registers. This
is directly accessible by the processor

6

7

Memory Hierarchy in Computer system

8

Characteristics of Memory Hierarchy

• Capacity:
It is the global volume of information the memory can store. As we
move from top to bottom in
the Hierarchy, the capacity increases.
Access Time:
It is the time interval between the read/write request and the
availability of the data. As we move
from top to bottom in the Hierarchy, the access time increases.

9

• Performance:
Earlier when the computer system was designed without Memory
Hierarchy design, the speed gap increases between the CPU registers
and Main Memory due to large difference in access time. This results in
lower performance of the system and thus, enhancement was required.
This enhancement was made in the form of Memory Hierarchy Design
because of which the performance of the system increases. One of the
most significant ways to increase system performance is minimizing
how far down the memory hierarchy one has to go to manipulate data.

• Cost per bit:
As we move from bottom to top in the Hierarchy, the cost per bit
increases i.e. Internal Memory is costlier than External Memory.

10

Cache Memories:

• The cache is a small and very fast memory, interposed between the
processor and the main memory. Its purpose is to make the main
memory appear to the processor to be much faster than it actually is.
The effectiveness of this approach is based on a property of
computer programs called locality of reference.

• Analysis of programs shows that most of their execution time is spent
in routines in which many instructions are executed repeatedly.
These instructions may constitute a simple loop, nested loops, or a
few procedures that repeatedly call each other.

11

• The cache memory can store a reasonable number of blocks at any
given time, but this number is small compared to the total number of
blocks in the main memory. The correspondence between the main
memory blocks and those in the cache is specified by a mapping
function.

• When the cache is full and a memory word (instruction or data) that is
not in the cache is referenced, the cache control hardware must decide
which block should be removed to create space for the new block that
contains the referenced word. The collection of rules for making this
decision constitutes the cache’s replacement algorithm.

12

• Cache Hits
The processor does not need to know explicitly about the existence of
the cache.

• It simply issues Read and Write requests using addresses that refer
to locations in the memory.

• The cache control circuitry determines whether the requested word
currently exists in the cache.

• If it does, the Read or Write operation is performed on the appropriate
cache location. In this case, a read or write hit is said to have
occurred

13

• Cache Misses
A Read operation for a word that is not in the cache constitutes a Read
miss. It causes the block of words containing the requested word to be
copied from the main memory into the cache.

• Cache Mapping:
There are three different types of mapping used for the purpose of
cache memory which are as follows: Direct mapping, Associative
mapping, and Set-Associative mapping.

14

• Direct mapping
The simplest way to determine cache locations in which to store
memory blocks is the direct mapping technique.

• In this technique, block j of the main memory maps onto block

j modulo 128 of the cache, as depicted in Figure Thus, whenever one
of the main memory blocks 0, 128, 256, . . . is
loaded into the cache, it is stored in cache block 0. Blocks 1, 129, 257, .
. . are stored in cache block 1, and so on. Since more than one memory
block is mapped onto a given cache block position, contention may
arise for that position even when the cache is not full.

15

16

• For example, instructions of a program may start in block 1 and
continue in block 129, possibly after a branch. As this program is
executed, both of these blocks must be transferred to the block-1
position in the cache. Contention is resolved by allowing the new block
to overwrite the currently resident block.

• With direct mapping, the replacement algorithm is trivial. Placement of
a block in the cache is determined by its memory address. The
memory address can be divided into three fields, as shown in Figure.
The low-order 4 bits select one of 16 words in a block.

17

• When a new block enters the cache, the 7-bit cache block field
determines the cache position in which this block must be stored. If
they match, then the desired word is in that block of the cache. If
there is no match, then the block containing the required word must
first be read from the main memory and loaded into the cache.

• The direct-mapping technique is easy to implement, but it is not very
flexible.

18

Associative Mapping

• In Associative mapping method,
in which a main memory block
can be placed into any cache
block position. In this case, 12 tag
bits are required to identify a
memory block when it is resident
in the cache.

• The tag bits of an address
received from the processor are
compared to the tag bits of each
block of the cache to see if the
desired block is present.

• This is called the
associative-mapping technique.

19

• It gives complete freedom in choosing the cache location in which to
place the memory block, resulting in a more efficient use of the space
in the cache.

• When a new block is brought into the cache, it replaces (ejects) an
existing block only if the cache is full. In this case, we need an
algorithm to select the block to be replaced

• To avoid a long delay, the tags must be searched in parallel. A search
of this kind is called an associative search

20

Set-Associative Mapping

• Another approach is to use a combination of the direct- and
associative-mapping techniques.

• The blocks of the cache are grouped into sets, and the mapping allows
a block of the main memory to reside in any block of a specific set.

• Hence, the contention problem of the direct method is eased by having
a few choices for block placement

• At the same time, the hardware cost is reduced by decreasing the size
of the associative search

21

22

Replacement Algorithms

• In a direct-mapped cache, the position of each block is predetermined
by its address; hence, the replacement strategy is trivial. In
associative and set-associative caches there exists some flexibility.
When a new block is to be brought into the cache and all the positions
that it may occupy are full, the cache controller must decide which of
the old blocks to overwrite.

• This is an important issue, because the decision can be a strong
determining factor in system performance. In general, the objective is
to keep blocks in the cache that are likely to be referenced in the near
future. But, it is not easy to determine which blocks are about to be
referenced.

23

• The property of locality of reference in programs gives a clue to a
reasonable strategy. Because program execution usually stays in
localized areas for reasonable periods of time, there is a high
probability that the blocks that have been referenced recently will be
referenced again soon.

• Therefore, when a block is to be overwritten, it is sensible to overwrite
the one that has gone the longest time without being referenced.

• This block is called the least recently used (LRU) block, and the
technique is called the LRU replacement algorithm.

• The LRU algorithm has been used extensively. Although it performs
well for many access patterns, it can lead to poor performance in some
cases

24

Least Recently Used (LRU)–

• In this algorithm page will be replaced which is least recently used.

• Example-Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2,
3, 0, 3, 2 with 4 page frames. Find number of page faults.

25

Write Policies

• The write operation is proceeding in 2 ways.
1. Write-through protocol
2. Write-back protocol

• Write-through protocol:
Here the cache location and the main memory locations are updated
simultaneously.

• Write-back protocol:
� This technique is to update only the cache location and to mark it
as with associated flag bit called dirty/modified bit.
� The word in the main memory will be updated later, when the block
containing this marked word is to be removed from the cache to make
room for a new block.
To overcome the read miss Load –through / Early restart protocol is
used.

